

    
      
          
            
  
Getting Started

The Sensitivity Calculator is an application for calculating the sensitivity
of the SKA Mid-Frequency Aperture Array.

The project uses a Docker container to make the results independent
of host environment. Starting and stopping the Calculator is done
using make, but first the code must be downloaded from the SKA
Git repository.

The necessary steps are:


	Install Git if you don’t already have it.

To find if Git is installed on your computer, type in a terminal:
git --version.
The output will either say which version of Git is installed, or
that git is an unknown command.

If Git is not there, point your browser to
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git and
follow the instructions for installation.



	Install Docker if you don’t already have it.

To find if Docker is installed  on your computer, type in a terminal:
docker -v.
The output will either say which version of Docker is installed, or
that docker is an unknown command.

If Docker is not there, point your browser to
https://docs.docker.com/get-docker and follow the instructions
for installation.



	Clone the sensitivity calculator from the SKA Git
repository by moving to the destination directory on your machine,
and typing:
git clone https://gitlab.com/ska-telescope/ska-ost-senscalc.git.


	Enter the code directory with: cd ska-ost-senscalc.


	Type: make up to build and run a Docker container with the
Sensitivity Calculator. The process may take several minutes the first
time.


	When the build process has finished, point your browser at
http://127.0.0.1:5000/ to see the Calculator.


	To shut down the Sensitivity Calculator and remove its Docker
container, type: make down.




Further documentation, including a User Guide can be found in the
docs folder. To build the html version of the documentation, start
from the ska-ost-senscalc directory and type cd docs; make html.
Read the documentation by pointing your browser
at docs/build/html/index.html.













            

          

      

      

    

  

    
      
          
            
  
User Guide

Users control the Calculator via a web page interface, published at URL
http://127.0.0.1:5000/.

The observing configuration is described by setting values in the web
interface. ‘Universal’ inputs required for all observing modes, such as
the target position, are displayed in the upper part of the
web page as shown in Fig. 1.

[image: _images/universal.png]
Figure 1 . Screenshot showing the ‘universal’ part of the Calculator page.

To make the interface more intuitive, configuration details that depend
on observing mode become visible on tabs extending from the base of the
page when the modes Line or Continuum are selected, as shown in
Fig. 2. Pulsars mode is not implemented yet.

[image: _images/expanded.png]
Figure 2 . Screenshot showing the drop-down tab for Continuum mode.

Once configured the Calculator can be used to either calculate the
sensitivity for a given on-source integration time, by entering the
time and clicking calculate, or calculate the integration time required
to reach a given sensitivity, by entering the sensitivity and clicking
calculate. Fig. 3 shows an example report provided to the user when this
is done.

[image: _images/example_result.png]
Figure 3 : Screenshot showing the report for the total continuum noise with
3 chunks for a hypothetical observation. No weather PWV (Precipitable Water
Vapour) was specified, so results for 3 canonical conditions are shown.


Inputs

The calculator inputs can be categorised by the observing mode they fall
under. Universal inputs are those that apply regardless of the selected
observing mode.


Universal


	Observing Band
The selected band to use for the observation:


	Band 1: 0.35GHz - 1.05GHz


	Band 2: 0.95GHz - 1.76GHz


	Band 5a: 4.6GHz - 8.4GHz


	Band 5b: 8.4GHz - 15.4GHz






	Right Ascension and Declination
The equatorial coordinates of the observed source. The sensitivity is
calculated for the time at which the target reaches its maximum elevation,
crossing the meridian.


	Array Configuration
Preset list of array configurations. Click on the tab to choose from:


	full: all SKA1 and MeerKAT antennas


	core: just the MeerKAT antennas


	extended: just the SKA1 antennas


	custom: activates the nSKA and nMeer fields where the
user can enter the number of SKA and MeerKAT antennas directly.






	Weather PWV
If no value is set in the weather PWV (Precipitable Water Vapour)
field then results will be given for 3 canonical conditions;
“Good” (PWV=5mm), “Average” (PWV=10mm) and “Bad” (PWV=20mm). The PWV
is used in the calculation of the atmospheric brightness temperature,
\(T_{atm}\). Since
\(T_{sys}\) is dependent on \(T_{sky}\) and therefore
\(T_{atm}\) and the weather conditions, if the user decides to
manually edit \(T_{sys}\) in ‘commisioning mode’, or any of the
variables it depends on, the option to set the PWV will be removed.


	Elevation
The user can use this field to specify the elevation at which the
target will be observed. If no value is set then a default of 45
degrees is assumed. If the given elevation is never reached by the
target, then the target’s zenith elevation will
be used. The actual elevation assumed for the sensitivity calculation
is reported in the result table.


	Integration Time Override
This is an optional input, which can be left blank. If a value is entered,
it will take precedence over any integration time inputs for any of the
observing modes. This is useful if the user wants to test one integration
time for multiple observing modes at once (so they don’t have to edit
each one individually). It may be good to have the other integration
time inputs disabled when a value is entered here.


	‘Commissioning Mode’ Inputs
By activating the ‘toggle commissioning mode’ switch the user is given access
to some of the parameters used in the sensitivity calculation, as shown
in Fig. 4. The calculator front-end automatically enables/disables inputs
to avoid conflicts as the user selects which one they want to edit. These
are passed to the calculator back-end as hard-coded values which will be
used in place of automatically calculating values for those variables.

[image: _images/internal_usecase_example.png]
Figure 4 . Expanded view of an example use-case for the additional
inputs on the ‘commissioning mode’ version of the calculator.







Line


	Zoom Frequency
For each zoom, the user can input a frequency for that zoom. When a value
is entered, the next zoom becomes enabled, allowing a value to be entered.
It can however be left blank, and the calculation will only be done for
zooms which have a set frequency. This way, the user can select how many
zooms they want (up to a maximum, currently 4).


	Zoom Resolution
For each zoom, the user can set a line resolution.


	Integration Time
The integration time of the observation. Used when calculating the
sensitivity that observing for this amount of time will achieve.


	Sensitivity
The sensitivity for the observation. Used when calculating the integration
time necessary to achieve this sensitivity.


	Supplied
Toggle allowing the user to swap between integration time and sensitivity
as the input (giving the other as the output).






Continuum


	Central Frequency
The central frequency for the observation. Must be within the selected band.


	Bandwidth
The bandwidth for the observation. Must be fully contained within the
selected band.


	Resolution
The line resolution.


	Number of chunks
The user can select an integer number of chunks to split the bandwidth up
into. If they do, the output report will show the sensitivity (or
integration time) for each chunk.


	Integration Time
The integration time of the observation. Used when calculating the
sensitivity that observing for this amount of time will achieve.


	Sensitivity
The sensitivity for the observation. Used when calculating the integration
time necessary to achieve this sensitivity.


	Supplied
Toggle allowing the user to swap between integration time and sensitivity
as the input (giving the other as the output).









            

          

      

      

    

  

    
      
          
            
  
Sensitivity Model

The ‘system equivalent flux density’ (SEFD) for a single dish is given by:


\[SEFD_{dish} = \frac{2kT_{sys}}{\eta_A A}\]

where:



	\(k\) is the Boltzmann constant so that \(kT_{sys}\) measures the power received
from background emission and all other sources of unwanted signal within the system, that is
\(T_{sys} = T_{spl} + T_{sky} + T_{rcv} + T_{cmb} + ...\)


	\(\eta_A\) is the dish efficiency


	\(A\) is the geometric dish area.







The SEFD for an interferometer array made up of two types of dish is given by:


\[SEFD_{\mathrm{array}} = \frac{1}{\sqrt{
    \frac{n_{\mathrm{SKA}}(n_{\mathrm{SKA}} - 1)}{SEFD_{\mathrm{SKA}}^2} +
    \frac{2 n_{\mathrm{SKA}} n_{\mathrm{MeerKAT}}}{SEFD_{\mathrm{SKA}} SEFD_{\mathrm{MeerKAT}}} +
    \frac{n_{\mathrm{MeerKAT}}(n_{\mathrm{MeerKAT}} - 1)}{SEFD_{\mathrm{MeerKAT}}^2}
}}\]

where \(n_{\mathrm{SKA}}\) is the number of SKA antennas, \(n_{\mathrm{MeerKAT}}\) is the number of MeerKAT
antennas, \(SEFD_{\mathrm{SKA}}\) is the SEFD computed for an individual SKA antenna, and
\(SEFD_{\mathrm{MeerKAT}}\) is the SEFD computed for an individual MeerKAT antenna.

We define the telescope sensitivity here as the minimum detectable Stokes I flux
(1 \(\sigma\)). This is equal to the noise on the background power, obtained
using the radiometer equation \(\sigma = SEFD / \sqrt{2 B t}\), corrected for
atmospheric absorption:


\[\Delta S_{min} \exp (-\tau_{atm}) = \frac{SEFD_{array}}{\eta_s \sqrt{2Bt}} Jy\]

where:



	\(\Delta S_{min}\) is the source flux density above the atmosphere


	\(\eta_s\) is the efficiency factor of the interferometer


	\(B\) is bandwidth


	\(t\) is integration time


	\(\tau_{atm}\) is the optical depth of the atmosphere towards the target







See Implementation for more details.




            

          

      

      

    

  

    
      
          
            
  
Introduction

Calculating the sensitivity of SKA Mid-Frequency Aperture Array will be
important for SKA scientists and engineers during the construction and
operation of the telescope.
This document describes the current Calculator implementation, explaining the
decisions behind its design, and links to a space where future work
can be planned.




            

          

      

      

    

  

    
      
          
            
  
make Targets

This project uses Docker containers to make the results independent
of host environment.

This project contains a Makefile which acts as a UI for building Docker
images, testing images, starting and stopping containers, etc.
The following make targets are defined:







	Makefile target

	Description





	build

	Build a new application image



	build_wheel

	Build the Python wheel



	down

	stop all containers launched ‘make up’



	help

	show a summary of the makefile targets



	lint

	lint the application (static code analysis)



	pull

	Download the application image from the Docker
registry



	push

	Push the application image to the Docker
registry



	test

	Test the application image



	up

	launch the Calculator container service









            

          

      

      

    

  

    
      
          
            
  
Design


Goals and Considerations

A prime consideration in the design of the calculator is
exactly how the user will interface with it. Some users may prefer a
simple, accessible interface, e.g. a web page, while others may prefer
to be able to download a GUI to their own device. Some may even prefer
to access the calculator API directly to use with their own code.
Importantly, however, the sensitivity calculator will ultimately be
part of some larger observing tool. The calculator is expected to provide the
user with a report for attachment to their observing proposal
supporting their use of the telescope. After speaking to the
developer of the ALMA Observing Support Tool, it became clear that
the vast majority of their users would use the web-based tool where
possible and nearly always have internet access when wanting to use
the tool. Therefore it was decided that the prototype calculator should
use a web-based interface to demonstrate functionality, but feature a
distinct front- and back-end, allowing the interface to be modified,
or for other interfaces to be added (if needed) as the project evolves.
Because the calculator is publicly available via the SKA GitLab, anyone
who wants to directly interact with the source code can do so.

The scientific model behind the sensitivity calculation will be
updated as the life-cycle of the telescope progresses. At the time of
writing it is based on the calculation framework of ‘SKA1: Design Baseline Description - SKA-TEL-SKO-0001075’
and ‘SKA1 System Performance Assessment Report - SKA-TEL-SKO-0001089’,
with some additional information from the earlier document
Anticipated SKA1 Science Performance [https://astronomers.skatelescope.org/wp-content/uploads/2017/10/SKA-TEL-SKO-0000818-01_SKA1_Science_Perform.pdf].
Once the telescope is live, we should be able to actively record, for
example, the system temperature. This, among other possible developments,
will change how the sensitivity calculator functions. In addition, with
the current calculator being a prototype, a number of features will
certainly be added as time goes on. With all of this considered, it
is sensible to maintain a modular design for the calculator back-end,
where functionality is separated into independent modules. This means
that if, say, the model describing the receiver temperature for SKA1
dishes is changed, the relevant code can easily be modified and the
rest of the program should still run without any issues.

One of the desired features of the calculator is to be able to both
calculate sensitivity, given an on-source integration time (and the
other required parameters) and calculate the integration time required
to reach a given sensitivity. The user should also be offered a range
of different observing modes, so they can calculate e.g. total continuum
noise, line noise, etc. These observing modes are not mutually exclusive,
however. A user may be interested in performing a continuum observation
with a number of zooms and would therefore want to know the sensitivity
they could obtain in each case. Allowing for this while also allowing
the user to swap between calculating sensitivity and integration time
potentially makes both the front- and back-end design quite complicated.
The solution ultimately was to separate out the different observing modes
into individual tabs as shown in the User Guide.





            

          

      

      

    

  

    
      
          
            
  
Implementation


Theoretical Background


Reference Documents







	RD1

	Anticipated SKA1 Science Performance [https://astronomers.skatelescope.org/wp-content/uploads/2017/10/SKA-TEL-SKO-0000818-01_SKA1_Science_Perform.pdf]



	RD2

	‘SKA1 Performance Assessment Report’ SKA-TEL-SKO-0001089








Applicable Documents







	AD1

	An improved source-subtracted and destriped 408 MHz all-sky map [https://arxiv.org/pdf/1411.3628.pdf]






An overview of the theoretical performance of SKA Mid comprising SKA1 and MeerKAT
dishes is given in RD1. A more detailed analysis is given in RD2 for an SKA Mid
made up of only SKA1 dishes. We are grateful to Songlin Chen for help in
navigating and understanding the documentation.

The Mid Sensitivity Calculator (SC) was originally implemented following
the theoretical framework of RD1 but is moving to the more rigorous
framework of RD2, though some details remain simplified.



Dish SEFD

The ‘system equivalent flux density’ (SEFD) for a single dish is the flux density
of a source that produces a signal equal to the background power of the system:


\[SEFD_{dish} = \frac{2kT_{sys}}{\eta_A A}\]

where:



	\(k\) is the Boltzmann constant so that \(kT_{sys}\) measures the power received
from background emission and all other sources of unwanted signal within the system, that is
\(T_{sys} = T_{spl} + T_{sky} + T_{rcv} + T_{cmb} + ...\)


	\(\eta_A\) is the dish efficiency


	\(A\) is the geometric dish area.


	The 2 is there because a radio telescope measures only one polarization and it is
assumed for this purpose that the other polarization has the same strength.









Array SEFD

SKA Mid is an interferometer that works by combining the signal from
multiple dishes. There are 2 types of dishes involved, SKA1 and MeerKAT,
with distinct characteristics. It can be shown, by adding up the signals
from each baseline, that the array SEFD is given by:


\[SEFD_{\mathrm{array}} = \frac{1}{\sqrt{
    \frac{n_{\mathrm{SKA}}(n_{\mathrm{SKA}} - 1)}{SEFD_{\mathrm{SKA}}^2} +
    \frac{2 n_{\mathrm{SKA}} n_{\mathrm{MeerKAT}}}{SEFD_{\mathrm{SKA}} SEFD_{\mathrm{MeerKAT}}} +
    \frac{n_{\mathrm{MeerKAT}}(n_{\mathrm{MeerKAT}} - 1)}{SEFD_{\mathrm{MeerKAT}}^2}
}}\]

where:



	\(n_{\mathrm{SKA}}\) is the number of SKA antennas


	\(n_{\mathrm{MeerKAT}}\) is the number of MeerKAT antennas


	\(SEFD_{\mathrm{SKA}}\) is the SEFD computed for an individual SKA antenna


	\(SEFD_{\mathrm{MeerKAT}}\) is the SEFD computed for an individual MeerKAT antenna.


	and the assumption has been made (?) that all baselines are equally efficient.









Array Sensitivity

The ‘sensitivity’ of a radio telescope is an overloaded term. For the purpose
of the SC we define the sensitivity as the minimum detectable Stokes I flux
(1 \(\sigma\)). This is equal to the noise on the background power, obtained
using the radiometer equation \(\sigma = SEFD / \sqrt{2 B t}\), corrected for
atmospheric absorption:


\[\Delta S_{min} \exp (-\tau_{atm}) = \frac{SEFD_{array}}{\eta_s \sqrt{2Bt}} Jy\]

where:



	\(\Delta S_{min}\) is the source flux density above the atmosphere


	\(\eta_s\) is the efficiency factor of the interferometer


	\(B\) is bandwidth


	\(t\) is integration time


	\(\tau_{atm}\) is the optical depth of the atmosphere towards the target


	the formula applies to the centres of fields-of-view where the dish aperture response is unity.









Dependency Tree

The devil is in the detail of calculating \(T_{sys}\) and the
efficiency factors \(\eta_A\) and \(\eta_s\). Fig.1 shows how these
values depend on other factors that must be estimated.

[image: _images/dependency_tree.png]
Figure 1 . The dependency tree for factors in the sensitivity calculation (from RD2).

Currently, the SC does not incorporate all the dependency factors. Those that
are included are described in the following sections.



System Temperature

The system temperature is given by:


\[T_{sys} = T_{spl} + T_{sky} + T_{rcv}\]

where:


\[T_{sky} = T_{CMB} + T_{gal} + T_{atm}\]

and:



	\(T_{spl}\) is the spillover temeprature, measuring power from the
ground reaching the receiver. Currently this is set to 3K for SKA1
dishes and 4K for MeerKAT.


	\(T_{rcv}\) measures noise from the receiver and electronics,
depending on band and dish type.


	\(T_{sky}\) is the total emission from the sky.


	\(T_{CMB}\) is the cosmic microwave background, 2.73K.


	\(T_{gal}\) is the Galactic astronomical emission in the
target direction. \(T_{gal} = T_{408} (0.408 / \nu_{GHz})^{alpha}\) K,
where \(T_{408}\) is the Galactic emission at 408MHz whose estimation is
described in Brightness at 408MHz.


	\(T_{atm}\) measures the brightness of the atmosphere, which
depends on weather, observing frequency and elevation. \(T_{atm}\) and
\(\tau_{atm}\) at the zenith are interpolated from lookup tables of
results from the CASA atmosphere module, run for a grid of frequencies and
weather PWVs. \(T_{atm}\) at the target elevation is estimated by
relating it to the physical temperature by
\(T_{phys} \sim T_{atm} (1 - \exp(-\tau_{atm}))\), where
\(\tau_{atm}\) varies as \(\sec(z)\).









Brightness at 408MHz

The brightness of the astronomical background signal at 408MHz is estimated
using the all-sky non source-subtracted HEALPix map described by
AD1 (Fig.2). The brightness seen by a dish is calculated by multiplying
map pixels that lie under the beam by the beam profile. The beam is assumed
to be Gaussian, truncated at a radius equal to the FWHM.

[image: _images/remazeilles_408.png]
Figure 2 . The all-sky 408Mhz map from AD1, used to calculate \(T_{408}\).



Efficiencies


Aperture

Following RD2, the aperture efficiency \(\eta_A\) is given by:


\[\eta_a = \eta_{dish} \eta_{feed}\]

where:


\[ \begin{align}\begin{aligned}\eta_{dish} = \eta_{block} \eta_{transp} \eta_{surface} \eta_{rad.r}\\\eta_{feed} = \eta_{rad.f} \eta_{ill}\end{aligned}\end{align} \]

and:



	\(\eta_{dish}\) accounts for the efficiencies attributable to the dish optics


	\(\eta_{block}\) accounts for physical aperture blockage


	\(\eta_{transp}\) accounts for losses by transmission through the reflector surface


	\(\eta_{surface}\) accounts for all losses due to incoherent propagation through the optics, including panel roughness, systematic deformation and mis-alignment;


	\(\eta_{rad.r}\) accounts for the Ohmic dielectric and scattering losses in the reflector system only


	\(\eta_{feed}\) accounts for the efficiencies attributable to the feeds


	\(\eta_{rad.f}\) accounts for feed mismatches and losses


	\(\eta_{ill}\) is the efficiency due to the actual illumination pattern







Currently, the SC follows RD1 and calculates an overall \(\eta_{dish}\) from
estimates of \(\eta_{ill}\), \(\eta_{surface}\) and \(\eta_{diffraction}\) (?).



Array

The system efficiency \(\eta_s\) is the result of multiplying together the
following factors:



	eta_bandpass
This factor describes the loss of efficiency due to the departure of the bandpass
from an ideal, rectangular shape. At present the value is set to 1.0.


	eta_coherence
This factor desribes the loss of efficiency due to coherence loss on a
baseline.


\[\eta_{coherence} = \exp-\frac{<\phi_{\epsilon}^2 (t)>}{2} = \exp-2\pi ^2 \nu_0^2 <\tau_\epsilon ^2(t)>\]

We take the coherence loss at 1s integration time, which is white phase-noise dominated.
The total phase delay is
due to the sum in quadrature of the phase delay of the clock and signal path on both receptors:


\[<\tau_\epsilon ^2> = <\tau_{clk,i}^2> + <\tau_{clk,j}^2> + <\tau_{dsh,i}^2> + <\tau_{dsh,j}^2>\]

The signal path depends on the environment (atmosphere, gusty wind) and the calibration quality, which is
quite complicated to estimate in practice. For now we adopt a value of \(\eta_{coherence} = 0.98\)
at \(\nu_0 =15.4GHz\)
as coherence loss for the worst case, and scale it to the frequency of observation using the given formula.



	eta_correlation
This factor describes the loss of efficiency due to imperfection in the correlation algorithm, e.g. truncation error.
Analysis described in “SKA CSP SKA1 MID array Correlator and Central beamformer sub element Signal Processing Matlab Model”
(311-000000-007) shows that the CSP correlation efficiency is almost 100% in the case of zero RFI, and
better than 98% in the case of strong RFI (defined as <10% RFI in the outside visibility ?query, what does this mean).

Currently the efficiency value is set to 0.98.



	eta_digitisation
This factor describes the loss of efficiency due to quantization during signal digitisation.
The process is independent of the telescope and environment, and depends only on
the ‘effective number of bits’ (ENOB) of the system, which depends in turn on
digitiser quality and clock jitter, and on band flatness.

The values used for each band are as follows:









	Band

	ENOB

	Band Flatness (dB)

	\(\eta\)





	Band 1

	8

	6.5

	0.999



	Band 2

	8

	6.5

	0.999



	Band 3

	6

	6.5

	0.998



	Band 4

	4

	6.5

	0.98



	Band 5a

	3

	4 (in any 2.5GHz BW)

	0.955



	Band 5b

	3

	4 (in any 2.5GHz BW)

	0.955








	eta_point
This factor describes the loss of efficiency due to dish pointing errors.
Here we currently use an approximate formula:


\[\eta_{point} \sim \frac{1}{1 + 8 ln2 \frac{\sigma_{\theta}^2}{FWHM^2}}\]

where FWHM is the beam full-width at half maximum power for the dish, given
by the approximate formula \(FWHM \sim 66 \lambda / D\) (degrees), and
\(\sigma_\theta\) is the RMS pointing error.










Design Independent

This section lists efiiciency factors that are independent of the telescope
design.



	eta_rfi
This factor describes the loss of efficiency due to parts of the
spectrum that are lost due to strong RFI noise corrupting the
astronomical signal. Currently set to 1.


	eta_data_loss
This describes the loss of observing time due to the need for calibration,
time spent moving to source, etc.

It is currently not used in the calculator, so implicitly set to 1.










Sensitivity Degradation due to RFI

The effect of RFI is currently removed from the system efficiency budget because
of the complexity of the RFI impact. Estimates for the impact of RFI are not solid
and work continues to understand them.



	Strong RFI
Strong RFI which results in saturation in the analogue chain or clipping in digitisation will be flagged.
The data loss and spectrum loss are instrument independent.


	Moderate RFI
Moderate RFI is not flagged but contributes significant input power and might induce
extra noise in the digitisation and correlation processes.


	Weak RFI
Weak RFI, or the high-order intermodulation components of strong and moderate RFI,
contribute to the sensitivity in the form of additive system noise.











Back-end

[image: _images/backend_uml.png]
Figure 3 . Class diagram of the Sensitivity Calculator back-end.

The back-end is written in Python 3.7 and the class diagram is shown in
Fig.3. The class MidCalculator has 2 public methods:
calculate_sensitivity to get the array sensitivity in
Jy for the given integration time, and calculate_integration_time
to get the integration time required for the given sensitivity.

The MidCalculator constructor has a number of required parameters
that define the observing configuration, target and weather. The
rest default to None, in which case their
values will be calculated automatically. The automatic values can
be overriden by setting them here.

All parameters, internal variables and results that describe ‘physical’
measures are implemented as astropy Quantities to prevent mixups over
units.

The calculator is modular in design.
There are separate functions for deriving each element of the
calculation, which can be easily modified as the
sensitivity model is updated.



Front-end


Public and ‘Expert’ Users

The calculator is intended for two types of user.

The first type is the ordinary observer who will use the
calculator to simply calculate the performance of the telescope
when looking at their target object.

The second type is the
‘expert’ user, who understands the telescope design
and wants to test the effect of tweaking some aspect
of it. This mode of use is intended for SKA staff. It allows the
user to manually edit some of the values which are usually calculated
automatically as part of the sensitivity calculation. Say a user wanted
to test out how a different array configuration might affect the
sensitivity of a given observation. They could manually edit the number
of SKA1 and MeerKAT dishes in the array and these would override the
numbers that the calculator uses and use the new values in the sensitivity
calculation. The diagram in Fig.4 shows the dependencies between the
variables used in the sensitivity calculation. The variables coloured
green are the ones which can be edited by the user in ‘expert’ mode;
blue are calculated, and pink not yet implemented.
The overall pattern matches that of the dependency tree in Fig.1,
with some small differences which wil be eliminated in time.

[image: _images/frontend_tree.png]
Figure 4 . Flowchart diagram showing the dependencies of the variables
used in the sensitivity calculation.



Technologies

The calculator front-end is designed as a
Flask [https://flask.palletsprojects.com/] web application, using
Bootstrap 4 [https://getbootstrap.com/] for a responsive design.

Flask is a WSGI web application framework, allowing for very simple
interaction with the Python 3 back-end code. It also ensures that the
sensitivity calculations are performed on the server-side, rather than the
client-side. Currently the calculations are not computationally intense
but as the calculator goes on to be developed and more features are added,
there’s a good chance that this will change. In any case, having this setup
minimises the amount of data to transfer between the user and the server,
since, for example, when the program needs to access a lookup table hosted
on the server, this file doesn’t need to be transferred to the user’s device.
This will improve the speed of the calculator’s response and reduce the
server load.

Bootstrap 4 is the most recent version of the Bootstrap toolkit - an
open-source HTML, CSS and JS library allowing for quick and clean
deployment of responsive web applications. Responsive design is extremely
important to make sure that the webpage functions and looks good,
regardless of the size/orientation of the user’s device. The calculator
uses the Bootstrap 4 CDN (Content Delivery Network), which means that
nothing needs to be installed on the server. When the user loads a page
which uses the CDN, they may already have the required files cached on
their device after visiting another website using the CDN. Since Bootstrap
is the world’s most popular web framework, it is likely this will be the
case. If, however, the user does not have the files cached, they will be
retrieved from the closest server to the user that is part of the network.
This means that there may be a little extra load-time when the user first
visits the website, but overall load-time will be reduced from then on.

Typescript is the main client-side language. Along with some jQuery and
AJAX to send RESTful requests to and from the server. Once the page is
loaded there are two ‘entry points’ for the Typescript code to run. The
first is when the “Calculate” button at the bottom of the page is clicked.
Code will then run to read the information from the form, perform some
validation (checking the inputs are formatted correctly, within some
allowable ranges, etc.) before using AJAX to send the data using a GET
request to the server-side Flask code. By performing this validation on
the client side, we limit the number of unnecessary requests to the server,
i.e. sending inputs which would not be allowed. The Flask code will parse
the inputs and, based on the data sent, call the calculator back-end code
to perform the necessary calculation, then return the results to the
client-side, which will output them to the user’s screen. The other
‘entry point’ into the client-side code is when the user modifies one
of the inputs. Once a value is changed and that input is deselected, some
Typescript code will execute to perform similar validation. This helps make
it clear what the actual values are that go into the calculator when the
“Calculate” button is pressed.

There is also some custom CSS used to style the site. While bootstrap takes
care of a lot of this, there are some tweaks which are made, such as setting
the colours of the webpage to match those laid out in the
SKA Brand Guidelines [https://www.skatelescope.org/wp-content/uploads/2019/04/SKA-Brand-Guidelines-June2015-lowres.pdf].



Inputs

The calculator inputs can be categorised by the observing mode they fall
under. Universal inputs are those that apply regardless of the selected
observing mode.


Universal


	Observing Band
The selected band to use for the observation:


	Band 1: 0.35GHz - 1.05GHz


	Band 2: 0.95GHz - 1.76GHz


	Band 5a: 4.6GHz - 8.4GHz


	Band 5b: 8.4GHz - 15.4GHz






	Right Ascension and Declination
The equatorial coordinates of the observed source. The sensitivity is
calculated for the time at which the target reaches its maximum elevation,
crossing the meridian.


	Array Configuration
Preset list of array configurations. Click on the tab to choose from:


	full: all SKA1 and MeerKAT antennas


	core: just the MeerKAT antennas


	extended: just the SKA1 antennas


	custom: activates the nSKA and nMeer fields where the
user can enter the number of SKA and MeerKAT antennas directly.






	Weather PWV
If no value is set in the weather PWV (Precipitable Water Vapour)
field then results will be given for 3 canonical conditions;
“Good” (PWV=5mm), “Average” (PWV=10mm) and “Bad” (PWV=20mm). The PWV
is used in the calculation of the atmospheric brightness temperature,
\(T_{atm}\). Since
\(T_{sys}\) is dependent on \(T_{sky}\) and therefore
\(T_{atm}\) and the weather conditions, if the user decides to
manually edit \(T_{sys}\) in ‘commisioning mode’, or any of the
variables it depends on, the option to set the PWV will be removed.


	Elevation
The user can use this field to specify the elevation at which the
target will be observed. If no value is set then a default of 45
degrees is assumed. If the given elevation is never reached by the
target, then the target’s zenith elevation will
be used. The actual elevation assumed for the sensitivity calculation
is reported in the result table.


	Integration Time Override
This is an optional input, which can be left blank. If a value is entered,
it will take precedence over any integration time inputs for any of the
observing modes. This is useful if the user wants to test one integration
time for multiple observing modes at once (so they don’t have to edit
each one individually). It may be good to have the other integration
time inputs disabled when a value is entered here.


	‘Commissioning Mode’ Inputs
As shown in Fig.5, the calculator in ‘commissioning’ mode allows the user
to modify some of the variables used in the sensitivity calculation. The
calculator front-end automatically enables/disables inputs to avoid
conflicts as the user selects which one they want to edit. These are
passed to the calculator back-end as hard-coded values which will be
used in place of automatically calculating values for those variables.




[image: _images/internal_usecase_example.png]
Figure 5 . Expanded view of the additional
inputs available in ‘commissioning’ mode.



Line


	Zoom Frequency
For each zoom, the user can input a frequency for that zoom. When a value
is entered, the next zoom becomes enabled, allowing a value to be entered.
It can however be left blank, and the calculation will only be done for
zooms which have a set frequency. This way, the user can select how many
zooms they want (up to a maximum, currently 4).


	Zoom Resolution
For each zoom, the user can set a line resolution.


	Integration Time
The integration time of the observation. Used when calculating the
sensitivity that observing for this amount of time will achieve.


	Sensitivity
The sensitivity for the observation. Used when calculating the integration
time necessary to achieve this sensitivity.


	Supplied
Toggle allowing the user to swap between integration time and sensitivity
as the input (giving the other as the output).






Continuum


	Central Frequency
The central frequency for the observation. Must be within the selected band.


	Bandwidth
The bandwidth for the observation. Must be fully contained within the
selected band.


	Resolution
The line resolution.


	Number of chunks
The user can select an integer number of chunks to split the bandwidth up
into. If they do, the output report will show the sensitivity (or
integration time) for each chunk.


	Integration Time
The integration time of the observation. Used when calculating the
sensitivity that observing for this amount of time will achieve.


	Sensitivity
The sensitivity for the observation. Used when calculating the integration
time necessary to achieve this sensitivity.


	Supplied
Toggle allowing the user to swap between integration time and sensitivity
as the input (giving the other as the output).







Subarray lookup service

There is a subarray lookup service implemented as a REST API. The json files
with the different subarray configuration are stored in a local folder in the
server. The list of available subarray configurations can be retrieved from
\subarrays. The idea is to populate the subarray dropdown menu using this
service. In the future the service can be expanded to accept custom subarray
configurations.






            

          

      

      

    

  

    
      
          
            
  
Local Development Environment

Here we describe how to set up a local development environment to test the different parts of the sensitivity
calculator. This is in general only required to gain fine grained control over the different development stages.

The implementation details are described in Implementation.


Outline and dependencies

The backend libraries have the following Python dependencies:


	numpy


	scipy


	astropy


	astropy_healpix




The frontend server is implemented using Flask and has as an extra dependency marshmallow.

The frontend uses bootstrap 4 and custom libraries written in TypeScript [https://www.typescriptlang.org/].
The assets are managed by a Node script that compiles the TypeScript libraries.

The documentation uses Sphinx [https://www.sphinx-doc.org/]  and is written in
rst [https://en.wikipedia.org/wiki/ReStructuredText] format. The Python dependencies to build the documentation are:


	sphinx


	sphinx_rtd_theme


	recommonmark






Python and Typescript development

The Python version can be managed with pyenv [https://github.com/pyenv/pyenv] which allows the installation and use
of a specific Python version for the project. This could be later used to test the code, particularly the backend, in
different Python versions. The additional extension pyenv-virtualenv [https://github.com/pyenv/pyenv-virtualenv] can
be used to manage virtual environments in combination with pyenv.

After installing pyenv and pyenv-virtualenv the following commands can be executed from the project root directory
to install a Python 3.7 version that will be used locally for the project. For example:

pyenv install 3.7.8
pyenv local 3.7.8





A .python-version file will be created in the root folder with the Python version that will be used.

The virtual environment and dependencies are managed by Poetry [https://python-poetry.org/] which allows the pinning
of dependencies and to resolve possible conflicts. It can also prepare the local virtual environment and manage the
building and distribution of the project. The configuration is written in the pyproject.toml file (see
PEP-518 [https://www.python.org/dev/peps/pep-0518/]).

We can set poetry to use a local virtual environment with:

poetry config virtualenvs.in-project true
poetry config virtualenvs.create true





The dependencies and virtual environment can be installed with:

poetry install





Please, note that Poetry is not using the Python registry defined by the PIP_INDEX_URL environment variable at the
moment. This parameter is set in the pyproject.toml section called tool.poetry.source.

After that, all the commands can be run prepending poetry run before.

The frontend assets are managed with Node.js [https://nodejs.org/en/docs/] which is used, at the moment, to
install and run the TypeScript tools, the testing environment cypress, and the Typescript tests. The Node.js
versions can be managed with nvm [https://github.com/nvm-sh/nvm] with the latest stable LTS version being v12.18.4
(Erbium). After installing nvm, the required version of Node.js can be installed with:

nvm install v14.16.1
nvm use v14.16.1





To make npm work with the SKA Central Artefact Reository npm registry we can set the environment variable to the
appropriate value:

export npm_config_registry=https://artefact.skao.int/repository/npm-all/





The TypeScript dependencies can be installed using:

npm install --no-cache





The TypeScript assets can be compiled using a Node.js script (defined in the file package.json; see for example
this link [https://www.digitalocean.com/community/tutorials/setting-up-a-node-project-with-typescript]) which can be
run with:

npm run build





This command will run the necessary scripts to transpile the TypeScript code to es6 Javascript.

To run the Flask server

poetry run flask run







Documentation

Before compiling the documentation make sure that the libraries required are installed with:

poetry install -E docs





Then, the documentation can be compiled from the root directory running the following command:

poetry run make -C ./docs html





The documentation will be located in docs/build/html and from this directory it can be inspected locally with a
command like:

python -m http.server 8020





and opening a browser tab in the address http://localhost:8020/



Tests with Cypress

Cypress [https://www.cypress.io/] is a testing framework that can be easily installed using Node.js.
Cypress API is a chaining API. See: https://docs.cypress.io/api

Install Cypress with:

npm install --save-dev cypress





Before running cypress, the sensitivity calculator must be running using, for example, make up.

To open the cypress GUI:

npx cypress open





To run in a headless mode like in CI:

npx cypress run





All the tests are saved in the cypress directory.



Base Docker images

The project is installed in base Docker images that are fetched from the
Central Artefact Repository (CAR) [https://developer.skao.int/en/sp-1466-add-bdd-docs/tools/containers/uploading-docker-nexus.html].
These images contain the basic dependencies for the project to run or to be tested. They are also used by the CI
pipelines which are also used to create them when necessary (in the build_base_images step).

The creation of these images is handled by the code located in the directory called docker. To trigger the creation
and pushing of a new release in the CI pipeline, the version of the release must be updated in the file .release.
At the moment there are two types of images that can be created: the production image with just the basic
dependencies, and the e2e image that contains some additional dependencies to help the running of the End 2 End
tests with Cypress.

The creation of a new base image can be tested locally using the command:

make release





from the docker directory. However, the uploading to the CAR should fail as the credentials will only be available
in the CI environment.





            

          

      

      

    

  

    
      
          
            
  
Further Work

The calculator, in its current prototype state, is the product of 6 months
of work by one developer. It is intended to be a sufficient platform to
allow the development of a more sophisticated tool.
There are already several suggestions for work that needs to be done in
the future. These are grouped below according to their source.


SKA Engineering

It has been pointed out that SKA Engineers and Astronomers define
‘sensitivity’ differently, and there is some question whether
the Sensitivity Model used by the Calculator matches that already
in use by the Engineers. We need to ensure that we define and use
our terms carefully and that the sensitivity models are reconciled.



Ideas from the Prototype

These ideas cropped up during devolopment of the prototype, but were
considered too time-consuming or too far off in the future to be added
at that stage:


	Shadowing.
In reality, depending on the pointing direction of the dishes in the array,
the dishes are likely to obscure one another, resulting in a loss of
effective area. This can be accounted for by determining a shadowing
fraction (i.e. what proportion of the total area is shadowed) and
reducing the effective area by a proportional amount.


	Array configuration.
The calculator currently only operates with the full array. There is an
option in the calculator to select an array configuration but it currently
does nothing. In the future, the user should be able to select from a
preset list of configurations.


	Image weighting.
The type of image weighting used will affect the sensitivity one can
achieve with the observation. Incorporating the Briggs robust weighting
parameter into the calculation will help reflect this.


	Beam synthesis.
Running some simulations to synthesise beams would be incredibly useful
and open up a lot of other options for functionality for the calculator.


	Weather.
Currently the user is given the options of “Good”, “Average” and “Bad”
weather, corresponding to pwv values of 5.8mm, 10.7mm and 19.2mm
respectively. While this is important for the calculation of the
atmospheric temperature, \(T_{atm}\), it is impossible for the user to predict
what the weather is going to be like when their observation gets scheduled.
Instead, it may make more sense to give options for different months/seasons,
since then the user would at least get an idea what the weather conditions
will likely be over the time their observations could be scheduled.


	Optional smoothing for zooms.
Down the line it is probably a good idea to add a optional line smoothing
option for zooms.


	More observing modes.
The calculator currently sports two observing modes - continuum and line
observations. As it is developed, it would be good to have more observing
modes added. The prototype has a tab for pulsar observations (and some
comments throughout the code), but there is nothing yet implemented for
this mode - it is just a placeholder/suggestion.


	Report resources.
Adding some report of the resources that will be used for the observation
(e.g. compute time) would be a valuable addition to the calculator output.


	Populate inputs from URL.
A handy feature would be if the calculator would parse the query string
from the URL and preload the calculator inputs with those values. When
combined with a ‘link generator’ feature which would be fairly
straightforward to add, this would allow users to generate links to the
calculations they have performed and share them with colleagues. When the
colleague clicked the link/pasted it into their address bar, they would be
taken to the page and the inputs would be loaded with the same values the
first user had used.


	Other Calculators.
In developing this calculator, it was useful to regularly look at other,
similar calculators/tools which exist. These other tools helped inform
design and inspire new feature ideas. A list of such calculators follows
here, which will hopefully be of use as the calculator is further developed.


	ALMA Sensitivity Calculator [https://almascience.eso.org/proposing/sensitivity-calculator]


	ATCA Sensitivity Calculator [https://www.narrabri.atnf.csiro.au/myatca/interactive_senscalc.html]


	e-MERLIN Sensitivity Calculator [http://www.e-merlin.ac.uk/calc.html]


	VLA Exposure Calculator [https://obs.vla.nrao.edu/ect/]










The Vision Thing

Would it be worth asking some people to write a (very) short story
describing how they imagine they would use the SKA ‘in the ideal world’,
especially
with reference to the Sensitivity Calculator?
Consider different scenarios
e.g. standard observing, response to transient triggers, survey planning,
whatever you can think of.
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sensitivity_calculator.utilities




            

          

      

      

    

  

    
      
          
            
  
Todo


	Insert todo’s here







sensitivity_calculator.mid_utilities




            

          

      

      

    

  

    
      
          
            
  
tests.sensitivity_calculator




            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  

    
      
          
            
  The Sensitivity Calculator is an application for calculating the sensitivity
of the SKA Mid-Frequency Aperture Array.

The project uses a Docker container to make the results independent
of host environment. Starting and stopping the Calculator is done
using make, but first the code must be downloaded from the SKA
Git repository.

The necessary steps are:


	Install Git if you don’t already have it.

To find if Git is installed on your computer, type in a terminal:
git --version.
The output will either say which version of Git is installed, or
that git is an unknown command.

If Git is not there, point your browser to
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git and
follow the instructions for installation.



	Install Docker if you don’t already have it.

To find if Docker is installed  on your computer, type in a terminal:
docker -v.
The output will either say which version of Docker is installed, or
that docker is an unknown command.

If Docker is not there, point your browser to
https://docs.docker.com/get-docker and follow the instructions
for installation.



	Clone the sensitivity calculator from the SKA Git
repository by moving to the destination directory on your machine,
and typing:
git clone https://gitlab.com/ska-telescope/ska-ost-senscalc.git.


	Enter the code directory with: cd ska-ost-senscalc.


	Type: make up to build and run a Docker container with the
Sensitivity Calculator. The process may take several minutes the first
time.


	When the build process has finished, point your browser at
http://127.0.0.1:5000/ to see the Calculator.


	To shut down the Sensitivity Calculator and remove its Docker
container, type: make down.




Further documentation, including a User Guide can be found in the
docs folder. To build the html version of the documentation, start
from the ska-ost-senscalc directory and type cd docs; make html.
Read the documentation by pointing your browser
at docs/build/html/index.html.
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© dishfwhmiabs_freq, dish type) © calulate Toaltarger,obs frea, sloha

© eta_dish(obs_freg, dish_type)
© mid_core_location()
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Dividing the bandwidn into 3, 0.26667 GHz chunks.

“The Line noise is at the central frequency of (6.6GHz) , with a resoluion of 0.21kHz






