
developer.skao.int Documentation
Release 0.1.0-beta

Marco Bartolini

Oct 04, 2021





USER GUIDE

1 User Guide 3

2 Sensitivity Model 9

3 Introduction 11

4 make Targets 13

5 Design 15

6 Implementation 17

7 Local Development Environment 29

8 Further Work 33

9 sensitivity_calculator.mid 35

10 sensitivity_calculator.subarray 37

11 sensitivity_calculator.utilities 39

12 sensitivity_calculator.mid_utilities 41

13 tests.sensitivity_calculator 43

i



ii



developer.skao.int Documentation, Release 0.1.0-beta

The Sensitivity Calculator is an application for calculating the sensitivity of the SKA Mid-Frequency Aperture Array.

The project uses a Docker container to make the results independent of host environment. Starting and stopping the
Calculator is done using make, but first the code must be downloaded from the SKA Git repository.

The necessary steps are:

1. Install Git if you don’t already have it.

To find if Git is installed on your computer, type in a terminal: git --version. The output will either say
which version of Git is installed, or that git is an unknown command.

If Git is not there, point your browser to https://git-scm.com/book/en/v2/Getting-Started-Installing-Git and fol-
low the instructions for installation.

2. Install Docker if you don’t already have it.

To find if Docker is installed on your computer, type in a terminal: docker -v. The output will either say which
version of Docker is installed, or that docker is an unknown command.

If Docker is not there, point your browser to https://docs.docker.com/get-docker and follow the instructions for
installation.

3. Clone the sensitivity calculator from the SKA Git repository by moving to the destination directory on your
machine, and typing: git clone https://gitlab.com/ska-telescope/ska-ost-senscalc.git.

4. Enter the code directory with: cd ska-ost-senscalc.

5. Type: make up to build and run a Docker container with the Sensitivity Calculator. The process may take several
minutes the first time.

6. When the build process has finished, point your browser at http://127.0.0.1:5000/ to see the Calculator.

7. To shut down the Sensitivity Calculator and remove its Docker container, type: make down.

Further documentation, including a User Guide can be found in the docs folder. To build the html version of the doc-
umentation, start from the ska-ost-senscalc directory and type cd docs; make html. Read the documentation
by pointing your browser at docs/build/html/index.html.

USER GUIDE 1

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.docker.com/get-docker


developer.skao.int Documentation, Release 0.1.0-beta

2 USER GUIDE



CHAPTER

ONE

USER GUIDE

Users control the Calculator via a web page interface, published at URL http://127.0.0.1:5000/.

The observing configuration is described by setting values in the web interface. ‘Universal’ inputs required for all
observing modes, such as the target position, are displayed in the upper part of the web page as shown in Fig. 1.

Figure 1 . Screenshot showing the ‘universal’ part of the Calculator page.

To make the interface more intuitive, configuration details that depend on observing mode become visible on tabs
extending from the base of the page when the modes Line or Continuum are selected, as shown in Fig. 2. Pulsars
mode is not implemented yet.

3



developer.skao.int Documentation, Release 0.1.0-beta

Figure 2 . Screenshot showing the drop-down tab for Continuum mode.

Once configured the Calculator can be used to either calculate the sensitivity for a given on-source integration time,
by entering the time and clicking calculate, or calculate the integration time required to reach a given sensitivity,
by entering the sensitivity and clicking calculate. Fig. 3 shows an example report provided to the user when this is
done.

Figure 3 : Screenshot showing the report for the total continuum noise with 3 chunks for a hypothetical observation.
No weather PWV (Precipitable Water Vapour) was specified, so results for 3 canonical conditions are shown.

4 Chapter 1. User Guide



developer.skao.int Documentation, Release 0.1.0-beta

1.1 Inputs

The calculator inputs can be categorised by the observing mode they fall under. Universal inputs are those that apply
regardless of the selected observing mode.

1.1.1 Universal

• Observing Band The selected band to use for the observation:

– Band 1: 0.35GHz - 1.05GHz

– Band 2: 0.95GHz - 1.76GHz

– Band 5a: 4.6GHz - 8.4GHz

– Band 5b: 8.4GHz - 15.4GHz

• Right Ascension and Declination The equatorial coordinates of the observed source. The sensitivity is calcu-
lated for the time at which the target reaches its maximum elevation, crossing the meridian.

• Array Configuration Preset list of array configurations. Click on the tab to choose from:

– full: all SKA1 and MeerKAT antennas

– core: just the MeerKAT antennas

– extended: just the SKA1 antennas

– custom: activates the nSKA and nMeer fields where the user can enter the number of SKA and MeerKAT
antennas directly.

• Weather PWV If no value is set in the weather PWV (Precipitable Water Vapour) field then results will be given
for 3 canonical conditions; “Good” (PWV=5mm), “Average” (PWV=10mm) and “Bad” (PWV=20mm). The
PWV is used in the calculation of the atmospheric brightness temperature, 𝑇𝑎𝑡𝑚. Since 𝑇𝑠𝑦𝑠 is dependent on
𝑇𝑠𝑘𝑦 and therefore 𝑇𝑎𝑡𝑚 and the weather conditions, if the user decides to manually edit 𝑇𝑠𝑦𝑠 in ‘commisioning
mode’, or any of the variables it depends on, the option to set the PWV will be removed.

• Elevation The user can use this field to specify the elevation at which the target will be observed. If no value is
set then a default of 45 degrees is assumed. If the given elevation is never reached by the target, then the target’s
zenith elevation will be used. The actual elevation assumed for the sensitivity calculation is reported in the result
table.

• Integration Time Override This is an optional input, which can be left blank. If a value is entered, it will take
precedence over any integration time inputs for any of the observing modes. This is useful if the user wants to
test one integration time for multiple observing modes at once (so they don’t have to edit each one individually).
It may be good to have the other integration time inputs disabled when a value is entered here.

• ‘Commissioning Mode’ Inputs By activating the ‘toggle commissioning mode’ switch the user is given access
to some of the parameters used in the sensitivity calculation, as shown in Fig. 4. The calculator front-end
automatically enables/disables inputs to avoid conflicts as the user selects which one they want to edit. These are
passed to the calculator back-end as hard-coded values which will be used in place of automatically calculating
values for those variables.

1.1. Inputs 5



developer.skao.int Documentation, Release 0.1.0-beta

6 Chapter 1. User Guide



developer.skao.int Documentation, Release 0.1.0-beta

Figure 4 . Expanded view of an example use-case for the additional inputs on the ‘commissioning mode’ version
of the calculator.

1.1.2 Line

• Zoom Frequency For each zoom, the user can input a frequency for that zoom. When a value is entered, the
next zoom becomes enabled, allowing a value to be entered. It can however be left blank, and the calculation
will only be done for zooms which have a set frequency. This way, the user can select how many zooms they
want (up to a maximum, currently 4).

• Zoom Resolution For each zoom, the user can set a line resolution.

• Integration Time The integration time of the observation. Used when calculating the sensitivity that observing
for this amount of time will achieve.

• Sensitivity The sensitivity for the observation. Used when calculating the integration time necessary to achieve
this sensitivity.

• Supplied Toggle allowing the user to swap between integration time and sensitivity as the input (giving the other
as the output).

1.1.3 Continuum

• Central Frequency The central frequency for the observation. Must be within the selected band.

• Bandwidth The bandwidth for the observation. Must be fully contained within the selected band.

• Resolution The line resolution.

• Number of chunks The user can select an integer number of chunks to split the bandwidth up into. If they do,
the output report will show the sensitivity (or integration time) for each chunk.

• Integration Time The integration time of the observation. Used when calculating the sensitivity that observing
for this amount of time will achieve.

• Sensitivity The sensitivity for the observation. Used when calculating the integration time necessary to achieve
this sensitivity.

• Supplied Toggle allowing the user to swap between integration time and sensitivity as the input (giving the other
as the output).

1.1. Inputs 7



developer.skao.int Documentation, Release 0.1.0-beta

8 Chapter 1. User Guide



CHAPTER

TWO

SENSITIVITY MODEL

The ‘system equivalent flux density’ (SEFD) for a single dish is given by:

𝑆𝐸𝐹𝐷𝑑𝑖𝑠ℎ =
2𝑘𝑇𝑠𝑦𝑠

𝜂𝐴𝐴

where:

• 𝑘 is the Boltzmann constant so that 𝑘𝑇𝑠𝑦𝑠 measures the power received from background emission and all other
sources of unwanted signal within the system, that is 𝑇𝑠𝑦𝑠 = 𝑇𝑠𝑝𝑙 + 𝑇𝑠𝑘𝑦 + 𝑇𝑟𝑐𝑣 + 𝑇𝑐𝑚𝑏 + ...

• 𝜂𝐴 is the dish efficiency

• 𝐴 is the geometric dish area.

The SEFD for an interferometer array made up of two types of dish is given by:

𝑆𝐸𝐹𝐷array =
1√︁

𝑛SKA(𝑛SKA−1)
𝑆𝐸𝐹𝐷2

SKA
+ 2𝑛SKA𝑛MeerKAT

𝑆𝐸𝐹𝐷SKA𝑆𝐸𝐹𝐷MeerKAT
+ 𝑛MeerKAT(𝑛MeerKAT−1)

𝑆𝐸𝐹𝐷2
MeerKAT

where 𝑛SKA is the number of SKA antennas, 𝑛MeerKAT is the number of MeerKAT antennas, 𝑆𝐸𝐹𝐷SKA is the SEFD
computed for an individual SKA antenna, and 𝑆𝐸𝐹𝐷MeerKAT is the SEFD computed for an individual MeerKAT
antenna.

We define the telescope sensitivity here as the minimum detectable Stokes I flux (1 𝜎). This is equal to the noise on the
background power, obtained using the radiometer equation 𝜎 = 𝑆𝐸𝐹𝐷/

√
2𝐵𝑡, corrected for atmospheric absorption:

∆𝑆𝑚𝑖𝑛 exp(−𝜏𝑎𝑡𝑚) =
𝑆𝐸𝐹𝐷𝑎𝑟𝑟𝑎𝑦

𝜂𝑠
√

2𝐵𝑡
𝐽𝑦

where:

• ∆𝑆𝑚𝑖𝑛 is the source flux density above the atmosphere

• 𝜂𝑠 is the efficiency factor of the interferometer

• 𝐵 is bandwidth

• 𝑡 is integration time

• 𝜏𝑎𝑡𝑚 is the optical depth of the atmosphere towards the target

See Implementation for more details.

9



developer.skao.int Documentation, Release 0.1.0-beta

10 Chapter 2. Sensitivity Model



CHAPTER

THREE

INTRODUCTION

Calculating the sensitivity of SKA Mid-Frequency Aperture Array will be important for SKA scientists and engineers
during the construction and operation of the telescope. This document describes the current Calculator implementation,
explaining the decisions behind its design, and links to a space where future work can be planned.

11



developer.skao.int Documentation, Release 0.1.0-beta

12 Chapter 3. Introduction



CHAPTER

FOUR

MAKE TARGETS

This project uses Docker containers to make the results independent of host environment.

This project contains a Makefile which acts as a UI for building Docker images, testing images, starting and stopping
containers, etc. The following make targets are defined:

Makefile target Description
build Build a new application image
build_wheel Build the Python wheel
down stop all containers launched ‘make up’
help show a summary of the makefile targets
lint lint the application (static code analysis)
pull Download the application image from the Docker registry
push Push the application image to the Docker registry
test Test the application image
up launch the Calculator container service

13



developer.skao.int Documentation, Release 0.1.0-beta

14 Chapter 4. make Targets



CHAPTER

FIVE

DESIGN

5.1 Goals and Considerations

A prime consideration in the design of the calculator is exactly how the user will interface with it. Some users may
prefer a simple, accessible interface, e.g. a web page, while others may prefer to be able to download a GUI to their own
device. Some may even prefer to access the calculator API directly to use with their own code. Importantly, however,
the sensitivity calculator will ultimately be part of some larger observing tool. The calculator is expected to provide
the user with a report for attachment to their observing proposal supporting their use of the telescope. After speaking
to the developer of the ALMA Observing Support Tool, it became clear that the vast majority of their users would use
the web-based tool where possible and nearly always have internet access when wanting to use the tool. Therefore it
was decided that the prototype calculator should use a web-based interface to demonstrate functionality, but feature a
distinct front- and back-end, allowing the interface to be modified, or for other interfaces to be added (if needed) as the
project evolves. Because the calculator is publicly available via the SKA GitLab, anyone who wants to directly interact
with the source code can do so.

The scientific model behind the sensitivity calculation will be updated as the life-cycle of the telescope progresses.
At the time of writing it is based on the calculation framework of ‘SKA1: Design Baseline Description - SKA-TEL-
SKO-0001075’ and ‘SKA1 System Performance Assessment Report - SKA-TEL-SKO-0001089’, with some additional
information from the earlier document Anticipated SKA1 Science Performance. Once the telescope is live, we should
be able to actively record, for example, the system temperature. This, among other possible developments, will change
how the sensitivity calculator functions. In addition, with the current calculator being a prototype, a number of features
will certainly be added as time goes on. With all of this considered, it is sensible to maintain a modular design for the
calculator back-end, where functionality is separated into independent modules. This means that if, say, the model
describing the receiver temperature for SKA1 dishes is changed, the relevant code can easily be modified and the rest
of the program should still run without any issues.

One of the desired features of the calculator is to be able to both calculate sensitivity, given an on-source integration
time (and the other required parameters) and calculate the integration time required to reach a given sensitivity. The
user should also be offered a range of different observing modes, so they can calculate e.g. total continuum noise,
line noise, etc. These observing modes are not mutually exclusive, however. A user may be interested in performing a
continuum observation with a number of zooms and would therefore want to know the sensitivity they could obtain in
each case. Allowing for this while also allowing the user to swap between calculating sensitivity and integration time
potentially makes both the front- and back-end design quite complicated. The solution ultimately was to separate out
the different observing modes into individual tabs as shown in the User Guide.

15

https://astronomers.skatelescope.org/wp-content/uploads/2017/10/SKA-TEL-SKO-0000818-01_SKA1_Science_Perform.pdf


developer.skao.int Documentation, Release 0.1.0-beta

16 Chapter 5. Design



CHAPTER

SIX

IMPLEMENTATION

6.1 Theoretical Background

6.1.1 Reference Documents

RD1 Anticipated SKA1 Science Performance
RD2 ‘SKA1 Performance Assessment Report’ SKA-TEL-SKO-0001089

6.1.2 Applicable Documents

AD1 An improved source-subtracted and destriped 408 MHz all-sky map

An overview of the theoretical performance of SKA Mid comprising SKA1 and MeerKAT dishes is given in RD1. A
more detailed analysis is given in RD2 for an SKA Mid made up of only SKA1 dishes. We are grateful to Songlin
Chen for help in navigating and understanding the documentation.

The Mid Sensitivity Calculator (SC) was originally implemented following the theoretical framework of RD1 but is
moving to the more rigorous framework of RD2, though some details remain simplified.

6.1.3 Dish SEFD

The ‘system equivalent flux density’ (SEFD) for a single dish is the flux density of a source that produces a signal equal
to the background power of the system:

𝑆𝐸𝐹𝐷𝑑𝑖𝑠ℎ =
2𝑘𝑇𝑠𝑦𝑠

𝜂𝐴𝐴

where:

• 𝑘 is the Boltzmann constant so that 𝑘𝑇𝑠𝑦𝑠 measures the power received from background emission and all other
sources of unwanted signal within the system, that is 𝑇𝑠𝑦𝑠 = 𝑇𝑠𝑝𝑙 + 𝑇𝑠𝑘𝑦 + 𝑇𝑟𝑐𝑣 + 𝑇𝑐𝑚𝑏 + ...

• 𝜂𝐴 is the dish efficiency

• 𝐴 is the geometric dish area.

• The 2 is there because a radio telescope measures only one polarization and it is assumed for this purpose that
the other polarization has the same strength.

17

https://astronomers.skatelescope.org/wp-content/uploads/2017/10/SKA-TEL-SKO-0000818-01_SKA1_Science_Perform.pdf
https://arxiv.org/pdf/1411.3628.pdf


developer.skao.int Documentation, Release 0.1.0-beta

6.1.4 Array SEFD

SKA Mid is an interferometer that works by combining the signal from multiple dishes. There are 2 types of dishes
involved, SKA1 and MeerKAT, with distinct characteristics. It can be shown, by adding up the signals from each
baseline, that the array SEFD is given by:

𝑆𝐸𝐹𝐷array =
1√︁

𝑛SKA(𝑛SKA−1)
𝑆𝐸𝐹𝐷2

SKA
+ 2𝑛SKA𝑛MeerKAT

𝑆𝐸𝐹𝐷SKA𝑆𝐸𝐹𝐷MeerKAT
+ 𝑛MeerKAT(𝑛MeerKAT−1)

𝑆𝐸𝐹𝐷2
MeerKAT

where:

• 𝑛SKA is the number of SKA antennas

• 𝑛MeerKAT is the number of MeerKAT antennas

• 𝑆𝐸𝐹𝐷SKA is the SEFD computed for an individual SKA antenna

• 𝑆𝐸𝐹𝐷MeerKAT is the SEFD computed for an individual MeerKAT antenna.

• and the assumption has been made (?) that all baselines are equally efficient.

6.1.5 Array Sensitivity

The ‘sensitivity’ of a radio telescope is an overloaded term. For the purpose of the SC we define the sensitivity as
the minimum detectable Stokes I flux (1 𝜎). This is equal to the noise on the background power, obtained using the
radiometer equation 𝜎 = 𝑆𝐸𝐹𝐷/

√
2𝐵𝑡, corrected for atmospheric absorption:

∆𝑆𝑚𝑖𝑛 exp(−𝜏𝑎𝑡𝑚) =
𝑆𝐸𝐹𝐷𝑎𝑟𝑟𝑎𝑦

𝜂𝑠
√

2𝐵𝑡
𝐽𝑦

where:

• ∆𝑆𝑚𝑖𝑛 is the source flux density above the atmosphere

• 𝜂𝑠 is the efficiency factor of the interferometer

• 𝐵 is bandwidth

• 𝑡 is integration time

• 𝜏𝑎𝑡𝑚 is the optical depth of the atmosphere towards the target

• the formula applies to the centres of fields-of-view where the dish aperture response is unity.

6.1.6 Dependency Tree

The devil is in the detail of calculating 𝑇𝑠𝑦𝑠 and the efficiency factors 𝜂𝐴 and 𝜂𝑠. Fig.1 shows how these values depend
on other factors that must be estimated.

18 Chapter 6. Implementation



developer.skao.int Documentation, Release 0.1.0-beta

Figure 1 . The dependency tree for factors in the sensitivity calculation (from RD2).

Currently, the SC does not incorporate all the dependency factors. Those that are included are described in the following
sections.

6.1.7 System Temperature

The system temperature is given by:

𝑇𝑠𝑦𝑠 = 𝑇𝑠𝑝𝑙 + 𝑇𝑠𝑘𝑦 + 𝑇𝑟𝑐𝑣

where:

𝑇𝑠𝑘𝑦 = 𝑇𝐶𝑀𝐵 + 𝑇𝑔𝑎𝑙 + 𝑇𝑎𝑡𝑚

and:

• 𝑇𝑠𝑝𝑙 is the spillover temeprature, measuring power from the ground reaching the receiver. Currently this is set to
3K for SKA1 dishes and 4K for MeerKAT.

• 𝑇𝑟𝑐𝑣 measures noise from the receiver and electronics, depending on band and dish type.

• 𝑇𝑠𝑘𝑦 is the total emission from the sky.

• 𝑇𝐶𝑀𝐵 is the cosmic microwave background, 2.73K.

• 𝑇𝑔𝑎𝑙 is the Galactic astronomical emission in the target direction. 𝑇𝑔𝑎𝑙 = 𝑇408(0.408/𝜈𝐺𝐻𝑧)𝑎𝑙𝑝ℎ𝑎 K, where 𝑇408

is the Galactic emission at 408MHz whose estimation is described in Brightness at 408MHz.

• 𝑇𝑎𝑡𝑚 measures the brightness of the atmosphere, which depends on weather, observing frequency and elevation.
𝑇𝑎𝑡𝑚 and 𝜏𝑎𝑡𝑚 at the zenith are interpolated from lookup tables of results from the CASA atmosphere module,

6.1. Theoretical Background 19



developer.skao.int Documentation, Release 0.1.0-beta

run for a grid of frequencies and weather PWVs. 𝑇𝑎𝑡𝑚 at the target elevation is estimated by relating it to the
physical temperature by 𝑇𝑝ℎ𝑦𝑠 ∼ 𝑇𝑎𝑡𝑚(1 − exp(−𝜏𝑎𝑡𝑚)), where 𝜏𝑎𝑡𝑚 varies as sec(𝑧).

6.1.8 Brightness at 408MHz

The brightness of the astronomical background signal at 408MHz is estimated using the all-sky non source-subtracted
HEALPix map described by AD1 (Fig.2). The brightness seen by a dish is calculated by multiplying map pixels that
lie under the beam by the beam profile. The beam is assumed to be Gaussian, truncated at a radius equal to the FWHM.

Figure 2 . The all-sky 408Mhz map from AD1, used to calculate 𝑇408.

6.1.9 Efficiencies

Aperture

Following RD2, the aperture efficiency 𝜂𝐴 is given by:

𝜂𝑎 = 𝜂𝑑𝑖𝑠ℎ𝜂𝑓𝑒𝑒𝑑

where:

𝜂𝑑𝑖𝑠ℎ = 𝜂𝑏𝑙𝑜𝑐𝑘𝜂𝑡𝑟𝑎𝑛𝑠𝑝𝜂𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝜂𝑟𝑎𝑑.𝑟

𝜂𝑓𝑒𝑒𝑑 = 𝜂𝑟𝑎𝑑.𝑓𝜂𝑖𝑙𝑙

and:

• 𝜂𝑑𝑖𝑠ℎ accounts for the efficiencies attributable to the dish optics

• 𝜂𝑏𝑙𝑜𝑐𝑘 accounts for physical aperture blockage

• 𝜂𝑡𝑟𝑎𝑛𝑠𝑝 accounts for losses by transmission through the reflector surface

20 Chapter 6. Implementation



developer.skao.int Documentation, Release 0.1.0-beta

• 𝜂𝑠𝑢𝑟𝑓𝑎𝑐𝑒 accounts for all losses due to incoherent propagation through the optics, including panel roughness,
systematic deformation and mis-alignment;

• 𝜂𝑟𝑎𝑑.𝑟 accounts for the Ohmic dielectric and scattering losses in the reflector system only

• 𝜂𝑓𝑒𝑒𝑑 accounts for the efficiencies attributable to the feeds

• 𝜂𝑟𝑎𝑑.𝑓 accounts for feed mismatches and losses

• 𝜂𝑖𝑙𝑙 is the efficiency due to the actual illumination pattern

Currently, the SC follows RD1 and calculates an overall 𝜂𝑑𝑖𝑠ℎ from estimates of 𝜂𝑖𝑙𝑙, 𝜂𝑠𝑢𝑟𝑓𝑎𝑐𝑒 and 𝜂𝑑𝑖𝑓𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (?).

Array

The system efficiency 𝜂𝑠 is the result of multiplying together the following factors:

• eta_bandpass This factor describes the loss of efficiency due to the departure of the bandpass from an ideal,
rectangular shape. At present the value is set to 1.0.

• eta_coherence This factor desribes the loss of efficiency due to coherence loss on a baseline.

𝜂𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 = exp−< 𝜑2
𝜖(𝑡) >

2
= exp−2𝜋2𝜈20 < 𝜏2𝜖 (𝑡) >

We take the coherence loss at 1s integration time, which is white phase-noise dominated. The total phase delay
is due to the sum in quadrature of the phase delay of the clock and signal path on both receptors:

< 𝜏2𝜖 >=< 𝜏2𝑐𝑙𝑘,𝑖 > + < 𝜏2𝑐𝑙𝑘,𝑗 > + < 𝜏2𝑑𝑠ℎ,𝑖 > + < 𝜏2𝑑𝑠ℎ,𝑗 >

The signal path depends on the environment (atmosphere, gusty wind) and the calibration quality, which is quite
complicated to estimate in practice. For now we adopt a value of 𝜂𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 = 0.98 at 𝜈0 = 15.4𝐺𝐻𝑧 as
coherence loss for the worst case, and scale it to the frequency of observation using the given formula.

• eta_correlation This factor describes the loss of efficiency due to imperfection in the correlation algorithm,
e.g. truncation error. Analysis described in “SKA CSP SKA1 MID array Correlator and Central beamformer
sub element Signal Processing Matlab Model” (311-000000-007) shows that the CSP correlation efficiency is
almost 100% in the case of zero RFI, and better than 98% in the case of strong RFI (defined as <10% RFI in the
outside visibility ?query, what does this mean).

Currently the efficiency value is set to 0.98.

• eta_digitisation This factor describes the loss of efficiency due to quantization during signal digitisation. The
process is independent of the telescope and environment, and depends only on the ‘effective number of bits’
(ENOB) of the system, which depends in turn on digitiser quality and clock jitter, and on band flatness.

The values used for each band are as follows:

Band ENOB Band Flatness (dB) 𝜂
Band 1 8 6.5 0.999
Band 2 8 6.5 0.999
Band 3 6 6.5 0.998
Band 4 4 6.5 0.98
Band 5a 3 4 (in any 2.5GHz BW) 0.955
Band 5b 3 4 (in any 2.5GHz BW) 0.955

• eta_point This factor describes the loss of efficiency due to dish pointing errors. Here we currently use an
approximate formula:

𝜂𝑝𝑜𝑖𝑛𝑡 ∼
1

1 + 8𝑙𝑛2
𝜎2
𝜃

𝐹𝑊𝐻𝑀2

6.1. Theoretical Background 21



developer.skao.int Documentation, Release 0.1.0-beta

where FWHM is the beam full-width at half maximum power for the dish, given by the approximate formula
𝐹𝑊𝐻𝑀 ∼ 66𝜆/𝐷 (degrees), and 𝜎𝜃 is the RMS pointing error.

Design Independent

This section lists efiiciency factors that are independent of the telescope design.

• eta_rfi This factor describes the loss of efficiency due to parts of the spectrum that are lost due to strong RFI
noise corrupting the astronomical signal. Currently set to 1.

• eta_data_loss This describes the loss of observing time due to the need for calibration, time spent moving to
source, etc.

It is currently not used in the calculator, so implicitly set to 1.

Sensitivity Degradation due to RFI

The effect of RFI is currently removed from the system efficiency budget because of the complexity of the RFI impact.
Estimates for the impact of RFI are not solid and work continues to understand them.

• Strong RFI Strong RFI which results in saturation in the analogue chain or clipping in digitisation will be
flagged. The data loss and spectrum loss are instrument independent.

• Moderate RFI Moderate RFI is not flagged but contributes significant input power and might induce extra noise
in the digitisation and correlation processes.

• Weak RFI Weak RFI, or the high-order intermodulation components of strong and moderate RFI, contribute to
the sensitivity in the form of additive system noise.

22 Chapter 6. Implementation



developer.skao.int Documentation, Release 0.1.0-beta

6.2 Back-end

Figure 3 . Class diagram of the Sensitivity Calculator back-end.

The back-end is written in Python 3.7 and the class diagram is shown in Fig.3. The class MidCalculator has 2
public methods: calculate_sensitivity to get the array sensitivity in Jy for the given integration time, and calcu-
late_integration_time to get the integration time required for the given sensitivity.

The MidCalculator constructor has a number of required parameters that define the observing configuration, target and
weather. The rest default to None, in which case their values will be calculated automatically. The automatic values
can be overriden by setting them here.

All parameters, internal variables and results that describe ‘physical’ measures are implemented as astropy Quantities
to prevent mixups over units.

The calculator is modular in design. There are separate functions for deriving each element of the calculation, which
can be easily modified as the sensitivity model is updated.

6.2. Back-end 23



developer.skao.int Documentation, Release 0.1.0-beta

6.3 Front-end

6.3.1 Public and ‘Expert’ Users

The calculator is intended for two types of user.

The first type is the ordinary observer who will use the calculator to simply calculate the performance of the telescope
when looking at their target object.

The second type is the ‘expert’ user, who understands the telescope design and wants to test the effect of tweaking
some aspect of it. This mode of use is intended for SKA staff. It allows the user to manually edit some of the values
which are usually calculated automatically as part of the sensitivity calculation. Say a user wanted to test out how a
different array configuration might affect the sensitivity of a given observation. They could manually edit the number
of SKA1 and MeerKAT dishes in the array and these would override the numbers that the calculator uses and use the
new values in the sensitivity calculation. The diagram in Fig.4 shows the dependencies between the variables used in
the sensitivity calculation. The variables coloured green are the ones which can be edited by the user in ‘expert’ mode;
blue are calculated, and pink not yet implemented. The overall pattern matches that of the dependency tree in Fig.1,
with some small differences which wil be eliminated in time.

Figure 4 . Flowchart diagram showing the dependencies of the variables used in the sensitivity calculation.

6.3.2 Technologies

The calculator front-end is designed as a Flask web application, using Bootstrap 4 for a responsive design.

Flask is a WSGI web application framework, allowing for very simple interaction with the Python 3 back-end code.
It also ensures that the sensitivity calculations are performed on the server-side, rather than the client-side. Currently
the calculations are not computationally intense but as the calculator goes on to be developed and more features are
added, there’s a good chance that this will change. In any case, having this setup minimises the amount of data to
transfer between the user and the server, since, for example, when the program needs to access a lookup table hosted
on the server, this file doesn’t need to be transferred to the user’s device. This will improve the speed of the calculator’s
response and reduce the server load.

24 Chapter 6. Implementation

https://flask.palletsprojects.com/
https://getbootstrap.com/


developer.skao.int Documentation, Release 0.1.0-beta

Bootstrap 4 is the most recent version of the Bootstrap toolkit - an open-source HTML, CSS and JS library allowing
for quick and clean deployment of responsive web applications. Responsive design is extremely important to make
sure that the webpage functions and looks good, regardless of the size/orientation of the user’s device. The calculator
uses the Bootstrap 4 CDN (Content Delivery Network), which means that nothing needs to be installed on the server.
When the user loads a page which uses the CDN, they may already have the required files cached on their device after
visiting another website using the CDN. Since Bootstrap is the world’s most popular web framework, it is likely this
will be the case. If, however, the user does not have the files cached, they will be retrieved from the closest server to
the user that is part of the network. This means that there may be a little extra load-time when the user first visits the
website, but overall load-time will be reduced from then on.

Typescript is the main client-side language. Along with some jQuery and AJAX to send RESTful requests to and from
the server. Once the page is loaded there are two ‘entry points’ for the Typescript code to run. The first is when the
“Calculate” button at the bottom of the page is clicked. Code will then run to read the information from the form,
perform some validation (checking the inputs are formatted correctly, within some allowable ranges, etc.) before using
AJAX to send the data using a GET request to the server-side Flask code. By performing this validation on the client
side, we limit the number of unnecessary requests to the server, i.e. sending inputs which would not be allowed. The
Flask code will parse the inputs and, based on the data sent, call the calculator back-end code to perform the necessary
calculation, then return the results to the client-side, which will output them to the user’s screen. The other ‘entry
point’ into the client-side code is when the user modifies one of the inputs. Once a value is changed and that input is
deselected, some Typescript code will execute to perform similar validation. This helps make it clear what the actual
values are that go into the calculator when the “Calculate” button is pressed.

There is also some custom CSS used to style the site. While bootstrap takes care of a lot of this, there are some tweaks
which are made, such as setting the colours of the webpage to match those laid out in the SKA Brand Guidelines.

6.3.3 Inputs

The calculator inputs can be categorised by the observing mode they fall under. Universal inputs are those that apply
regardless of the selected observing mode.

Universal

• Observing Band The selected band to use for the observation:

– Band 1: 0.35GHz - 1.05GHz

– Band 2: 0.95GHz - 1.76GHz

– Band 5a: 4.6GHz - 8.4GHz

– Band 5b: 8.4GHz - 15.4GHz

• Right Ascension and Declination The equatorial coordinates of the observed source. The sensitivity is calcu-
lated for the time at which the target reaches its maximum elevation, crossing the meridian.

• Array Configuration Preset list of array configurations. Click on the tab to choose from:

– full: all SKA1 and MeerKAT antennas

– core: just the MeerKAT antennas

– extended: just the SKA1 antennas

– custom: activates the nSKA and nMeer fields where the user can enter the number of SKA and MeerKAT
antennas directly.

• Weather PWV If no value is set in the weather PWV (Precipitable Water Vapour) field then results will be given
for 3 canonical conditions; “Good” (PWV=5mm), “Average” (PWV=10mm) and “Bad” (PWV=20mm). The
PWV is used in the calculation of the atmospheric brightness temperature, 𝑇𝑎𝑡𝑚. Since 𝑇𝑠𝑦𝑠 is dependent on

6.3. Front-end 25

https://www.skatelescope.org/wp-content/uploads/2019/04/SKA-Brand-Guidelines-June2015-lowres.pdf


developer.skao.int Documentation, Release 0.1.0-beta

𝑇𝑠𝑘𝑦 and therefore 𝑇𝑎𝑡𝑚 and the weather conditions, if the user decides to manually edit 𝑇𝑠𝑦𝑠 in ‘commisioning
mode’, or any of the variables it depends on, the option to set the PWV will be removed.

• Elevation The user can use this field to specify the elevation at which the target will be observed. If no value is
set then a default of 45 degrees is assumed. If the given elevation is never reached by the target, then the target’s
zenith elevation will be used. The actual elevation assumed for the sensitivity calculation is reported in the result
table.

• Integration Time Override This is an optional input, which can be left blank. If a value is entered, it will take
precedence over any integration time inputs for any of the observing modes. This is useful if the user wants to
test one integration time for multiple observing modes at once (so they don’t have to edit each one individually).
It may be good to have the other integration time inputs disabled when a value is entered here.

• ‘Commissioning Mode’ Inputs As shown in Fig.5, the calculator in ‘commissioning’ mode allows the user
to modify some of the variables used in the sensitivity calculation. The calculator front-end automatically en-
ables/disables inputs to avoid conflicts as the user selects which one they want to edit. These are passed to the
calculator back-end as hard-coded values which will be used in place of automatically calculating values for those
variables.

26 Chapter 6. Implementation



developer.skao.int Documentation, Release 0.1.0-beta

6.3. Front-end 27



developer.skao.int Documentation, Release 0.1.0-beta

Figure 5 . Expanded view of the additional inputs available in ‘commissioning’ mode.

Line

• Zoom Frequency For each zoom, the user can input a frequency for that zoom. When a value is entered, the
next zoom becomes enabled, allowing a value to be entered. It can however be left blank, and the calculation
will only be done for zooms which have a set frequency. This way, the user can select how many zooms they
want (up to a maximum, currently 4).

• Zoom Resolution For each zoom, the user can set a line resolution.

• Integration Time The integration time of the observation. Used when calculating the sensitivity that observing
for this amount of time will achieve.

• Sensitivity The sensitivity for the observation. Used when calculating the integration time necessary to achieve
this sensitivity.

• Supplied Toggle allowing the user to swap between integration time and sensitivity as the input (giving the other
as the output).

Continuum

• Central Frequency The central frequency for the observation. Must be within the selected band.

• Bandwidth The bandwidth for the observation. Must be fully contained within the selected band.

• Resolution The line resolution.

• Number of chunks The user can select an integer number of chunks to split the bandwidth up into. If they do,
the output report will show the sensitivity (or integration time) for each chunk.

• Integration Time The integration time of the observation. Used when calculating the sensitivity that observing
for this amount of time will achieve.

• Sensitivity The sensitivity for the observation. Used when calculating the integration time necessary to achieve
this sensitivity.

• Supplied Toggle allowing the user to swap between integration time and sensitivity as the input (giving the other
as the output).

6.3.4 Subarray lookup service

There is a subarray lookup service implemented as a REST API. The json files with the different subarray configuration
are stored in a local folder in the server. The list of available subarray configurations can be retrieved from \subarrays.
The idea is to populate the subarray dropdown menu using this service. In the future the service can be expanded to
accept custom subarray configurations.

28 Chapter 6. Implementation



CHAPTER

SEVEN

LOCAL DEVELOPMENT ENVIRONMENT

Here we describe how to set up a local development environment to test the different parts of the sensitivity calculator.
This is in general only required to gain fine grained control over the different development stages.

The implementation details are described in Implementation.

7.1 Outline and dependencies

The backend libraries have the following Python dependencies:

• numpy

• scipy

• astropy

• astropy_healpix

The frontend server is implemented using Flask and has as an extra dependency marshmallow.

The frontend uses bootstrap 4 and custom libraries written in TypeScript. The assets are managed by a Node script
that compiles the TypeScript libraries.

The documentation uses Sphinx and is written in rst format. The Python dependencies to build the documentation
are:

• sphinx

• sphinx_rtd_theme

• recommonmark

7.2 Python and Typescript development

The Python version can be managed with pyenv which allows the installation and use of a specific Python version
for the project. This could be later used to test the code, particularly the backend, in different Python versions. The
additional extension pyenv-virtualenv can be used to manage virtual environments in combination with pyenv.

After installing pyenv and pyenv-virtualenv the following commands can be executed from the project root directory
to install a Python 3.7 version that will be used locally for the project. For example:

pyenv install 3.7.8
pyenv local 3.7.8

29

https://www.typescriptlang.org/
https://www.sphinx-doc.org/
https://en.wikipedia.org/wiki/ReStructuredText
https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv-virtualenv


developer.skao.int Documentation, Release 0.1.0-beta

A .python-version file will be created in the root folder with the Python version that will be used.

The virtual environment and dependencies are managed by Poetry which allows the pinning of dependencies and to
resolve possible conflicts. It can also prepare the local virtual environment and manage the building and distribution
of the project. The configuration is written in the pyproject.toml file (see PEP-518).

We can set poetry to use a local virtual environment with:

poetry config virtualenvs.in-project true
poetry config virtualenvs.create true

The dependencies and virtual environment can be installed with:

poetry install

Please, note that Poetry is not using the Python registry defined by the PIP_INDEX_URL environment variable at the
moment. This parameter is set in the pyproject.toml section called tool.poetry.source.

After that, all the commands can be run prepending poetry run before.

The frontend assets are managed with Node.js which is used, at the moment, to install and run the TypeScript tools,
the testing environment cypress, and the Typescript tests. The Node.js versions can be managed with nvm with the
latest stable LTS version being v12.18.4 (Erbium). After installing nvm, the required version of Node.js can be installed
with:

nvm install v14.16.1
nvm use v14.16.1

To make npm work with the SKA Central Artefact Reository npm registry we can set the environment variable to the
appropriate value:

export npm_config_registry=https://artefact.skao.int/repository/npm-all/

The TypeScript dependencies can be installed using:

npm install --no-cache

The TypeScript assets can be compiled using a Node.js script (defined in the file package.json; see for example this
link) which can be run with:

npm run build

This command will run the necessary scripts to transpile the TypeScript code to es6 Javascript.

To run the Flask server

30 Chapter 7. Local Development Environment

https://python-poetry.org/
https://www.python.org/dev/peps/pep-0518/
https://nodejs.org/en/docs/
https://github.com/nvm-sh/nvm
https://www.digitalocean.com/community/tutorials/setting-up-a-node-project-with-typescript
https://www.digitalocean.com/community/tutorials/setting-up-a-node-project-with-typescript


developer.skao.int Documentation, Release 0.1.0-beta

poetry run flask run

7.3 Documentation

Before compiling the documentation make sure that the libraries required are installed with:

poetry install -E docs

Then, the documentation can be compiled from the root directory running the following command:

poetry run make -C ./docs html

The documentation will be located in docs/build/html and from this directory it can be inspected locally with a
command like:

python -m http.server 8020

and opening a browser tab in the address http://localhost:8020/

7.4 Tests with Cypress

Cypress is a testing framework that can be easily installed using Node.js. Cypress API is a chaining API. See: https:
//docs.cypress.io/api

Install Cypress with:

npm install --save-dev cypress

Before running cypress, the sensitivity calculator must be running using, for example, make up.

To open the cypress GUI:

npx cypress open

To run in a headless mode like in CI:

npx cypress run

All the tests are saved in the cypress directory.

7.5 Base Docker images

The project is installed in base Docker images that are fetched from the Central Artefact Repository (CAR). These
images contain the basic dependencies for the project to run or to be tested. They are also used by the CI pipelines
which are also used to create them when necessary (in the build_base_images step).

The creation of these images is handled by the code located in the directory called docker. To trigger the creation and
pushing of a new release in the CI pipeline, the version of the release must be updated in the file .release. At the
moment there are two types of images that can be created: the production image with just the basic dependencies,
and the e2e image that contains some additional dependencies to help the running of the End 2 End tests with Cypress.

7.3. Documentation 31

http://localhost:8020/
https://www.cypress.io/
https://docs.cypress.io/api
https://docs.cypress.io/api
https://developer.skao.int/en/sp-1466-add-bdd-docs/tools/containers/uploading-docker-nexus.html


developer.skao.int Documentation, Release 0.1.0-beta

The creation of a new base image can be tested locally using the command:

make release

from the docker directory. However, the uploading to the CAR should fail as the credentials will only be available in
the CI environment.

32 Chapter 7. Local Development Environment



CHAPTER

EIGHT

FURTHER WORK

The calculator, in its current prototype state, is the product of 6 months of work by one developer. It is intended to be
a sufficient platform to allow the development of a more sophisticated tool. There are already several suggestions for
work that needs to be done in the future. These are grouped below according to their source.

8.1 SKA Engineering

It has been pointed out that SKA Engineers and Astronomers define ‘sensitivity’ differently, and there is some question
whether the Sensitivity Model used by the Calculator matches that already in use by the Engineers. We need to ensure
that we define and use our terms carefully and that the sensitivity models are reconciled.

8.2 Ideas from the Prototype

These ideas cropped up during devolopment of the prototype, but were considered too time-consuming or too far off
in the future to be added at that stage:

• Shadowing. In reality, depending on the pointing direction of the dishes in the array, the dishes are likely to
obscure one another, resulting in a loss of effective area. This can be accounted for by determining a shadowing
fraction (i.e. what proportion of the total area is shadowed) and reducing the effective area by a proportional
amount.

• Array configuration. The calculator currently only operates with the full array. There is an option in the
calculator to select an array configuration but it currently does nothing. In the future, the user should be able to
select from a preset list of configurations.

• Image weighting. The type of image weighting used will affect the sensitivity one can achieve with the obser-
vation. Incorporating the Briggs robust weighting parameter into the calculation will help reflect this.

• Beam synthesis. Running some simulations to synthesise beams would be incredibly useful and open up a lot
of other options for functionality for the calculator.

• Weather. Currently the user is given the options of “Good”, “Average” and “Bad” weather, corresponding to
pwv values of 5.8mm, 10.7mm and 19.2mm respectively. While this is important for the calculation of the
atmospheric temperature, 𝑇𝑎𝑡𝑚, it is impossible for the user to predict what the weather is going to be like when
their observation gets scheduled. Instead, it may make more sense to give options for different months/seasons,
since then the user would at least get an idea what the weather conditions will likely be over the time their
observations could be scheduled.

• Optional smoothing for zooms. Down the line it is probably a good idea to add a optional line smoothing option
for zooms.

33



developer.skao.int Documentation, Release 0.1.0-beta

• More observing modes. The calculator currently sports two observing modes - continuum and line observations.
As it is developed, it would be good to have more observing modes added. The prototype has a tab for pulsar
observations (and some comments throughout the code), but there is nothing yet implemented for this mode - it
is just a placeholder/suggestion.

• Report resources. Adding some report of the resources that will be used for the observation (e.g. compute time)
would be a valuable addition to the calculator output.

• Populate inputs from URL. A handy feature would be if the calculator would parse the query string from the
URL and preload the calculator inputs with those values. When combined with a ‘link generator’ feature which
would be fairly straightforward to add, this would allow users to generate links to the calculations they have
performed and share them with colleagues. When the colleague clicked the link/pasted it into their address bar,
they would be taken to the page and the inputs would be loaded with the same values the first user had used.

• Other Calculators. In developing this calculator, it was useful to regularly look at other, similar calculators/tools
which exist. These other tools helped inform design and inspire new feature ideas. A list of such calculators
follows here, which will hopefully be of use as the calculator is further developed.

– ALMA Sensitivity Calculator

– ATCA Sensitivity Calculator

– e-MERLIN Sensitivity Calculator

– VLA Exposure Calculator

8.3 The Vision Thing

Would it be worth asking some people to write a (very) short story describing how they imagine they would use the
SKA ‘in the ideal world’, especially with reference to the Sensitivity Calculator? Consider different scenarios e.g.
standard observing, response to transient triggers, survey planning, whatever you can think of.

34 Chapter 8. Further Work

https://almascience.eso.org/proposing/sensitivity-calculator
https://www.narrabri.atnf.csiro.au/myatca/interactive_senscalc.html
http://www.e-merlin.ac.uk/calc.html
https://obs.vla.nrao.edu/ect/


CHAPTER

NINE

SENSITIVITY_CALCULATOR.MID

35



developer.skao.int Documentation, Release 0.1.0-beta

36 Chapter 9. sensitivity_calculator.mid



CHAPTER

TEN

SENSITIVITY_CALCULATOR.SUBARRAY

Todo:

• Insert todo’s here

37



developer.skao.int Documentation, Release 0.1.0-beta

38 Chapter 10. sensitivity_calculator.subarray



CHAPTER

ELEVEN

SENSITIVITY_CALCULATOR.UTILITIES

Todo:

• Insert todo’s here

39



developer.skao.int Documentation, Release 0.1.0-beta

40 Chapter 11. sensitivity_calculator.utilities



CHAPTER

TWELVE

SENSITIVITY_CALCULATOR.MID_UTILITIES

41



developer.skao.int Documentation, Release 0.1.0-beta

42 Chapter 12. sensitivity_calculator.mid_utilities



CHAPTER

THIRTEEN

TESTS.SENSITIVITY_CALCULATOR

43


	User Guide
	Inputs
	Universal
	Line
	Continuum


	Sensitivity Model
	Introduction
	make Targets
	Design
	Goals and Considerations

	Implementation
	Theoretical Background
	Reference Documents
	Applicable Documents
	Dish SEFD
	Array SEFD
	Array Sensitivity
	Dependency Tree
	System Temperature
	Brightness at 408MHz
	Efficiencies
	Aperture
	Array
	Design Independent
	Sensitivity Degradation due to RFI


	Back-end
	Front-end
	Public and ‘Expert’ Users
	Technologies
	Inputs
	Universal
	Line
	Continuum

	Subarray lookup service


	Local Development Environment
	Outline and dependencies
	Python and Typescript development
	Documentation
	Tests with Cypress
	Base Docker images

	Further Work
	SKA Engineering
	Ideas from the Prototype
	The Vision Thing

	sensitivity_calculator.mid
	sensitivity_calculator.subarray
	sensitivity_calculator.utilities
	sensitivity_calculator.mid_utilities
	tests.sensitivity_calculator

